
Next-Generation Space Internet:
Standardization and Implementation

James Noles
Global Science and Technology, Inc.

6411 Ivy Lane, Suite 300
Greenbelt, MD 20770

Keith Scott, Mary Jo Zukoski
The MITRE Corporation

1820 Dolley Madison Blvd.
McLean, VA 22102-3481

Howard Weiss
SPARTA, Inc.

7075 Samuel Morse Drive
Columbia, MD 21046

Abstract1 -- Future orbiting sensor constellations will consist of
tens, hundreds, or even thousands of spacecraft, each capable of
generating enormous amounts of data. Managing these
constellations will require the spacecraft to be autonomous,
deciding without human intervention what observations to make
and asynchronously reporting results. The need for a robust
and efficient shared network infrastructure combined with the
desire to provide direct connectivity between orbiting
instruments and scientists on the Internet, argues for using IP
and IP-based protocols end-to-end.

We believe the current model is not well-suited for future
sensor webs. Drawing from NASA vision documents for
future sensor network requirements, we have derived the
following requirements:

1. Direct IP-level connectivity is required between orbiting
elements (instruments) and Internet-based hosts
(investigators and data consumers).

2. Future orbiting constellations need to support elements in
different orbits (e.g. LEO, MEO, GEO) with connectivity
among them. In particular, some elements might not
always, or ever, have direct connectivity with ground
stations.

This paper describes a standards-based architecture for end-to-
end IP between orbiting assets and Internet-based hosts. The
main elements are: 1) Security provided by a mix of IPSEC and
the more bit-efficient SCPS-SP security protocols 2) a MobileIP
implementation that takes advantage of scheduled connectivity
to reduce overhead and 3) Resource reservation to limit loss and
hence increase the goodput across the space-to-ground link. We
have also developed a link-layer driver that allows us to run
standard space link telecommand and telemetry protocols over
Ethernet for easy lab integration of instruments.

3. The orbiting elements will share a common
communications infrastructure. That is, a single LEO
satellite might function as a router for several GEO
satellites.

4. Future instruments will be autonomous or semi-
autonomous. This will allow the instruments to
dynamically vary the frequency and resolution of their
measurements in response to conditions.

In a previous paper [1] we verified the feasibility of the above
elements in isolation and quantified the performance
enhancements they provided though simulation and rapid
prototyping. This paper describes the current state of
standardization of the NGSI protocols within the Consultative
Committee for Space Data Systems (CCSDS) and the current
system demonstration. The NGSI technologies are being tested
in a realistic environment, with the emulated instrument,
ground station, control center, and principal investigator
distributed across the country.

5. Future instruments will produce extremely large raw data
sets that may be passed between spacecraft and
processed on orbit.

6. Efficiency of communication over the space-to-ground
link is highly desirable. We assume that the data
products generated on orbit, even after processing, will
be large enough so as to consume all available downlink
capacity. I. INTRODUCTION

Current space missions rely on highly managed
communications. There is no direct interaction between users
(investigators or data recipients) and spacecraft instruments.
All such interactions are filtered through the spacecraft
control center and usually involve human processing and
intervention. This works well when there are relatively few
space assets, where communication with each can be
independently scheduled, and where data volumes are
predictable.

As a result of these assumptions, we propose a completely IP-
based system for the ground and space segments, with
extensions to increase efficiency.

The rest of this paper is organized as follows. Section II
describes the NGSI system architecture. Section III describes
the NGSI system architecture in detail, and Section IV our
standardization efforts. Section V describes our current
system implementation and demonstration. Section VI
contains concluding remarks and areas of future study.

II. NGSI SYSTEM ARCHITECTURE

Three main elements are required in order to connect space
assets with Internet-based hosts: 1) security, 2) support for IP

1 This work was performed under contract to NASA Jet Propulsion
Laboratory in support of ESTO/AIST task AIST-99-0031

mobility, and 3) resource reservation. This section begins
with the overall system architecture then describes each of
the elements in detail.

The NGSI system architecture is shown in Figure 1, where
different horizontal bands represent different views of the
system. At the top are the physical components:
Investigators, a Control Center, a Ground Station, and
possibly multiple spacecraft between the ground station and
the destination. Note that we make no assumption about the
networks connecting the control center to either investigators
or the groundstation. One advantage of our architecture is
that these can be completely open networks, including the
Internet. Also, we consider an architecture where there may
be multiple space hops between an instrument and the ground
station responsible for communicating with it.

S/C S/C
PI HA INSG FA Space Link SG

CCSDS Link Layer

PI Principal Investigator
SG Security Gateway
HA Home Agent
FA Foreign Agent
IN Instrument

RSVP

Security

IP

GroundstationControl Center

IPSEC SCPS-SP None

SCPS-SPIPSEC None

 IPMobileIP Tunnel

CCSDS Link Layer

Space Link

IP GRE Tunnel

 PI/IN SPRFC 2746-like HA/FA IP-IPPI/IN IPSEC [GPI] PI/IN

 IN/PI SPRFC 2746-like FA/HA IP-IPIN/PI IPSEC [GPI] IN/PI

Internet

Investigator

Figure 1: System architecture.

The ‘security’ band highlights the security aspects of the
architecture, namely a set of security gateways that translate
between IPSEC and the more bit-efficient SCPS-SP
protocols. While we have not implemented security on board
the destination spacecraft in our prototype, its addition would
be a simple matter.

The IP band highlights the need for two IP tunnels. One
tunnel handles forward (from the PI to the spacecraft) traffic,
and the other ensures that reverse traffic is routed through the
security gateway at the control center.

The bottom band illustrates how the different flows appear to
RSVP. In particular, a single unidirectional flow has four
states: encapsulated in IPSEC, encapsulated in SCPS-SP and
tunneled inside a MobileIP tunnel, encapsulated in SCPS-SP,
and “native” (unencrypted and not tunneled).

The basic requirements to implement the architecture are:
security gateways at the control center and onboard each
spacecraft requiring security; a MobileIP Foreign Agent in
each groundstation; and an RSVP-capable network
connecting the groundstation to the Internet users. No
changes are required to routers ‘in the middle’ of the Internet.
Even the requirement for an RSVP-capable connection
among ground users can be relaxed if the connection from the

groundstation to the control center is via a guaranteed
bandwidth connection that matches the space-to-ground link
bandwidth.

We also assume that each instrument is associated with a
particular control center (though different instruments on the
same spacecraft could have different control centers). This
lets us know how to establish the required MobileIP tunnels
and lets Internet-based hosts set up IPSEC associations with
fixed endpoints.

A. Security

Allowing direct access to space assets from hosts on the
Internet requires security. Authentication to ensure that only
authorized users are granted access to the space link and
encryption to ensure the privacy of science data are both
primary concerns. Under joint DoD/NASA sponsorship, a set
of protocols were specified for use in bandwidth constrained
environments. This work, known collectively as the Space
Communications Protocol Suite (SCPS), includes a Security
Protocol, known as SCPS-SP [2].

SCPS-SP provides the same security services as its Internet
counterpart, IPSec, but with significantly less overhead.
Transport-layer performance-enhancing proxies developed as
part of the SCPS work can also host security gateways that
translate between IPSEC and SCPS-SP. We use these
gateways to allow terrestrial users to employ IPSEC while
maintaining the efficiency of SCPS-SP across the space link.
Each end user configures their system to user IPSEC tunnel
mode when communicating with instruments, with the
control center as the other end of the tunnel. The control
center decrypts the IPSEC traffic and re-encrypts using
SCPS-SP for transmission to security gateways on board the
spacecraft. The security gateways on board the spacecraft
can handle SCPS-SP communications with multiple distinct
control centers, each with their own encryption.

The basic setup is shown in , using a web server as
the surrogate satellite instrument.

Figure 2

Figure 2: IPSEC/SCPS-SP Security with Trusted Gateways

End User
SCPS
GW1

SCPS
GW2 Web Server

TCP/IP/IPSEC
w/ IKE/IP

SCPS-TP
SCPS-SP
IP

TCP/IP

The SCPS-SP specification is algorithm neutral. That is, it
specifies the protocol but does not specify the algorithms to
be used to provide security. In the SCPS-SP reference
implementation, for testing purposes, a simple XOR

algorithm was used in place of an actual encryption
algorithm. For this project we have added two encryption
algorithms to the SCPS-SP reference code and the SCPS
gateway: the (former) U.S. Data Encryption Standard (DES),
and a stronger variant known as triple DES (3DES).

Another aspect of security that was not addressed in the
earlier SCPS work was key management and key distribution.
Testing of SCPS-SP was carried out with manually
distributed and installed cryptographic keys. For large-scale
use, an automated means of distributing and managing keys is
necessary. In order to provide key management for the space
environment, a tradeoff study was performed to examine
what key management protocols were already in use, their
strengths and weaknesses, and whether or not they could be
used or adapted for the space community. Alternatively, if
none of the existing key management protocols could be
used, then a custom protocol would have to be designed.

The Internet community has developed a protocol known as
the Internet Key Exchange (IKE). This was one of the
leading contenders for use in the space environment from
several perspectives. First, it is the Internet standard and
therefore implementations would exist via the open-source
community as well as commercially off-the-shelf. Its
adoption would also allow complete interoperability between
ground-based and space-based assets requiring cryptographic
keys. However, IKE is a “heavy-weight” protocol with a
considerable amount of overhead and it uses several round-
trip messages to perform its work. As a result of the key
management analysis study, it was determined that although
IKE had considerable overhead, it was invoked infrequently
and therefore the overhead would be bearable over
constrained bandwidth links.

As a result of the analysis, the version of IKE written for
FreeBSD is being modified for use with SCPS-SP in the
SCPS gateway environment. The Racoon implementation of
IKE assumes the use of an internal, kernel-owned key cache
that is not used by the out-of-kernel SCPS protocols. As a
result, changes to both SCPS-SP and Racoon are being made
to allow the key exchange to occur and for the SCPS gateway
to obtain the keys for use in secure communications.

B. MobileIP Extensions

As orbiting spacecraft communicate with different ground
stations, their points of attachment to the terrestrial network
change. If the groundstations with which they are
communicating are at different locations in the Internet
topology (if they are on different IP subnets, e.g.), then the
spacecraft appear to Internet hosts like a mobile users, similar
to someone with a laptop moving between home, work, and
other locations.

Mobile IP, as specified in RFC 2002 [3], was designed to
permit mobile agents to move randomly through the Internet
while still receiving datagrams at a fixed address. It is

natural, then, to want to apply MobileIP to the spacecraft
environment. However, the protocol overhead required for
each ground station connection is not conducive for real time
communication.

In MobileIP, mobile units connect with ‘Foreign Agents’ that
assist in delivering IP packets to the mobiles. Mobiles
discover foreign agents by means of router solicitation and
router advertisement messages. For spacecraft, these
messages would have to be transmitted over the space link,
consuming precious bandwidth and time during each contact.

Once it has contacted a foreign agent, the mobile node
receives a care-of address that provides information as to its
current point of attachment to the Internet. The mobile node
registers this care-of address with its home agent, who
tunnels datagrams destined for the mobile agent to this care-
of address. MobileIP specifies a preferred method of
acquiring a care-of address through foreign agents, where the
foreign agent acts as the endpoint of the tunnel, decapsulates
received datagrams, and delivers them to the mobile node.
This setup, while straightforward, may be too time- and
bandwidth-consuming in the limited resource environment of
spacecraft communication.

On the other hand, spacecraft do not move randomly.
Contacts between spacecraft and ground stations are
scheduled, with a priori agreement of established state. Our
work takes advantage of this agreement and has implemented
extensions to MobileIP, allowing for real-time user-to-
payload interaction.

Consider the spacecraft to be a mobile node, the ground
station as foreign agent, and the control center as home agent.
Then making use of the a priori knowledge of state, the
ground station (in its role as foreign agent) can act as a proxy
for the mobile node. Knowing that the spacecraft is about to
make contact, the ground station pre-registers with the
control center and sets up the tunnel. The objective is for
datagrams destined for the spacecraft to arrive as the space-
ground contact is established. (Note: This is an application of
the Just-in-Time scheduling used in many manufacturing
operations.) From its perspective, the spacecraft assumes
foreign agent and tunnel functionality will be in place and
prepares any outgoing datagrams for download.

For connection handoffs, the next ground station will begin
the proxy registration slightly before the current station
reaches loss-of-signal (LOS). This prevents an undue
number of dropped datagrams due to misrouting – which can
result if the current tunnel is still in place after LOS is
achieved. If the next tunnel is established slightly before its
ground station makes contact, the station will queue the data.

We have incorporated these modifications to the base
protocol of the Dynamics – HUT MobileIP system [4]. This
is a Linux implementation of Mobile IP, which we installed
on a Red Hat 7.1 distribution. The mobile node, foreign agent
and home agent were run on different machines. The IP-in-IP

tunneling support was loaded and configured as a kernel
module.

Cisco has recently developed a ‘mobile router’ product that
can provide some of the same benefits as the extensions we
have developed here. The mobile router technology is
targeted primarily at the automobile and aircraft industries as
a way of simplifying MobileIP for travelers. The mobile
router is simply a mobile node with routing functionality.

Table 1

Table 1: Comparison of NGSI and Mobile Router Features

 shows a comparison of the mobile router and NGSI
MobileIP approaches. Because the mobile router is designed
to work in ‘standard’ MobileIP environments where user
mobility may not be predictable, it keeps the mobile—foreign
agent signaling. This is exactly the overhead we were
attempting to avoid in designing the NGSI MobileIP
extensions. In addition, the mobile router establishes two IP-
in-IP tunnels, the standard one from the home agent to the
foreign agent, and a second IP-in-IP tunnel from the home
agent to the mobile. This inner tunnel crosses the FA –
mobile link, which in our case would be a ground-to-space
link.

Feature Cisco Mobile
Router

NGSI MobileIP
Extensions

Mobile – FA
Signaling
(Across the
space-to-
ground-link)

Yes – Router
solicitation /
Advertisement
and Mobile
Registration

NO – MobileIP
tunnels configured
from the ground
before acquisition of
signal (AOS)

Per-Packet
Overhead
between FA and
Mobile (Across
the space-to-
ground link)

20 bytes per
packet of IP-in-IP
encapsulation

None

Operation in
multi-hop
constellation
environments

No – Router
solicitations and
advertisements
are link layer
broadcasts

Yes – MobileIP
tunnels initiated on
the ground can
direct traffic to
arbitrary uplinks

We believe that these limit the utility of the mobile router
technology to situations where there is only a single hop
between ground and spacecraft and where efficiency is not an
issue.

C. Resource Reservation

Because of the expense and scarcity of bandwidth between
space assets and the ground, preventing data loss and
subsequent retransmission is of great concern. This is
particularly difficult in the case where multiple semi-
autonomous spacecraft need to share communications
resources. If too many sources try to use the same resource

(link) concurrently, they will congest it and the result will be
dropped packets and data loss.

The Resource reSerVation Protocol (RSVP) used in the
Internet can prevent data loss due to congestion by allowing
flows to reserve bandwidth and buffer space in intermediate
routers. Our work with RSVP has been to adapt it to our
environment and to integrate it with the other work packages,
specifically MobileIP and the security gateways mentioned
above.

RSVP is an end-to-end protocol for resource reservation, and
hence touches all of the other work areas. Here we describe
our modifications to the ISI reference implementation of
RSVP [5] that allow it to function in the NGSI environment.

The security gateways present a special challenge to RSVP,
as the RSVP design did not anticipate cases where the IP
protocol field changes in transit. To preserve reservations as
flows change security measures, the RSVP daemons on the
security gateways were modified to manipulate the IP
protocol fields of RSVP filterspec messages. Thus RSVP
messages that arrive reserving IPSEC flows leave reserving
SCPS-SP flows, and vice versa.

The MobileIP tunnels used to forward data between home
and foreign agents also required changes to the RSVP
daemons running on those hosts. RFC 2746[6] defines
mechanisms to allow RSVP to operate over IP tunnels, but no
suitable implementation existed for the Linux operating
system (we chose the HUT MobileIP implementation, which
runs under Linux). We thus plan to implement the tunnel
functionality described in RFC2746 in the Linux RSVP
implementation. This requires an IP-in-UDP encapsulation
mechanism so that RSVP could distinguish between tunneled
flows (all of which have the same source and destination IP
addresses – those of the tunnel endpoints).

The Crypto IP Encapsulation (CIPE [7]) distributed with
recent Linux kernels provides IP-in-UDP encapsulation (with
optional encryption). However the interface required to set
up and manage CIPE tunnels is significantly different from
that used for managing the IP-in-IP tunnels that the HUT
MobileIP daemon expects. In addition, CIPE was designed
for VPN-type applications, where manual administration of
tunnels is feasible. For our application we needed a system
capable of dynamic tunnel management via an application
programming interface (API) rather than a configuration file.

We thus chose to modify the IP-in-IP driver to include an
extra UDP header. Issues with this approach include
changing the Maximum Transfer Unit (MTU) to avoid IP
fragmentation, the ability of RSVP to correctly identify the
interface (since the IP-in-UDP interfaces are not physical
interfaces) and the performance of traffic control over these
interfaces. The MTU issues are easily solved at the endpoints
or the transport-layer gateways, and the Linux RSVP
implementation does recognize the virtual drivers as
interfaces.

We found that the performance of the various traffic control
mechanisms varied widely depending on the operating
system and link layer. The goal was to characterize the
traffic control characteristics to determine their impact on
overall performance. In particular, there are known issues
with the class-based queueing (CBQ [8]) mechanisms used in
both the Linux and FreeBSD implementations that can cause
them to under-perform, especially when examined over short
time periods. For a deployed system we would be relying on
the traffic shaping of the routers (e.g. Cisco, Juniper, …),
which is considerably better than the Linux or FreeBSD
implementations.

DRAFT

MISSION
DEPLOYMENT

WHITE
BOOK:

PROPOSED
STANDARD

RED
BOOK:
DRAFT

STANDARD

BLUE
BOOK:

STANDARD

EXPERIMENTAL
DEPLOYMENT

ORANGE
BOOK:

EXPERIMENTAL

DRAFT

MISSION
DEPLOYMENT

WHITE
BOOK:

PROPOSED
STANDARD

RED
BOOK:
DRAFT

STANDARD

BLUE
BOOK:

STANDARD

WHITE
BOOK:

PROPOSED
STANDARD

RED
BOOK:
DRAFT

STANDARD

BLUE
BOOK:

STANDARD

EXPERIMENTAL
DEPLOYMENT

ORANGE
BOOK:

EXPERIMENTAL

Document Tracks

Hard Mission
Requirement

Hard Mission
Requirement

Prospective
Requirement

NGSI

For our system, CBQ was provided by the altq package [9] in
FreeBSD and by the native 2.4-kernel traffic control [10] in
Linux. As a first measure, we simply examined the traffic
control mechanisms’ abilities to shape traffic. This provides
the foundation for resource reservation, as we would like to
be able to provide minimums for both reserved and non-
reserved traffic, as well as to allow each to borrow unused
bandwidth from the other.

For plain, non-encapsulated IP traffic, the Linux cbq provided
much better performance, able to shape traffic to within a few
hundred kilobits per second of the target rate, and provided
good borrowing properties between classes. The altq
implementation was much coarser, generally over-limiting
bandwidth by several megabits per second. Linux traffic
control performance dropped dramatically when used over an
encapsulating interface (either the IP-in-UDP or the CCSDS
links). In these cases linux tc’s ability to rate control traffic
approached altq’s. This should not pose significant problems
at low data rates, but could significantly impact performance
as data rates increase past around 10Mbps.

III. STANDARDIZATION

The market for space communications equipment is relatively
small, certainly when compared to the Internet. At the same
time, NASA and other nations’ space agencies are anxious to
leverage the interoperability that comes from standardizing
space technologies, whether they be communications
protocols or hardware specifications.

We are standardizing mechanisms within the Consultative
Committee for Space Data Systems (CCSDS)[11]. The
CCSDS standardization process currently consists of two
‘tracks’ as shown in : a ‘standards’ track and an
‘experimental’ track. The standards track is for technologies
that have hard mission requirements, i.e. technologies that
missions under development or in the planning stage are
willing to commit to for operational use. The experimental
track is for technologies that have prospective application but
which no mission has yet committed to fly. At the current
time a number of projects fall into this ‘experimental’
category, including most IP-based mission designs.

Figure 3

Figure 3: CCSDS Standardization Tracks

The goal of the experimental track is to provide a forum to
flesh out how advanced technologies can be applied to
missions and to develop concepts of operations. If the
technology proves compelling, the proposed standards can be
reviewed and quickly moved to and along the standards track.

The NGSI work described here is being standardized in the
experimental track, under the Next Generation Space Internet
working group within CCSDS.

IV. SYSTEM DEMONSTRATION

To demonstrate the feasibility of the proposed approach, we
first constructed a lab demonstration of the proposed
technologies. This year we have moved the demonstration
out of the lab so that the various elements, PI, control center,
ground station, and satellite are geographically and
topologically distributed. The emulated PI is located in
Greenbelt, MD, the control center in Columbia, MD, the
ground station in McLean, VA, and the simulated satellite is
at the Jet Propulsion Laboratory in Pasadena, CA.

MITRE

SPARTA

JPL

GST

Control Center

PI
Security
Gateway

MobileIP
Home
Agent

MobileIP
Mobile
Node

IP-in-UDP Tunnel

F

Ground StationSatellite

MobileIP
Foreign
Agent

IPSEC

Security
Gateway

F
Security
Gateway

F CCSDS
Link

Endpoint
CCSDS Link LayerVTUN

User

SCPS-SP

SCPS-SP

Figure 4: NGSI Distributed Demonstration

The various machines have all been ‘hardened’ with security
measures, showing that the NGSI technologies can function
in highly secure environments.

Splitting the simulated satellite between JPL (on the West
coast) and MITRE (in Virginia) is a result of the CCSDS link
layer implementation. The CCSDS link layer emulator
allows the demonstration to use real space link telementry
and telecommand protocols, but the implementation we have
requires that the two ends of the link be on the same Ethernet
segment. A future version of the demonstration will use
VTUN’s ability to tunnel Ethernet over IP to shift the space
link endpoint to JPL.

V. CONCLUSIONS AND FUTURE WORK

One of the biggest challenges to deploying the architecture
described here is the inclusion of RSVP. RSVP is needed
both to increase efficiency over the space link and to provide
an automated resource arbitration mechanism that frees
human operators from being involved in bandwidth
provisioning. The difficulty is that ISPs do not generally
support users sourceing RSVP requests through their
networks. A solution to this for TCP-based traffic would be
to acquire a guaranteed-bandwidth VPN service between
ground stations and control centers that would pass the RSVP
signaling. Provided that the VPN has capacity equal to or
greater than the space link, there will be no loss in this
portion of the network. The security gateway in the control
center could then terminate the RSVP signaling. There is no
danger of (unrecoverable) loss between the control center and
the PI because the SCPS security gateway implementation
also contains a transport-layer gateway. The security
gateway actually terminates TCP connections coming from
the satellite and starts separate ones with Internet-based hosts.
Thus any losses incurred between the control center and
Internet-based hosts would incur retransmissions from the
control center, not from the instrument (and hence not across
the space link).

The next step in advancing the Technical Readiness Level
(TRL) of the NGSI technologies will be to field them on a
suitable flight demonstration. The difficulty of porting the
required protocols to a flight environment will range from
trivial to moderate depending on the operating system of the
target spacecraft.

This work is nearing the end of the standardization process in
the CCSDS experimental track. The results, both
specifications and code, will be maintained by CCSDS so that
future missions will be able to review them and quickly
convert them to full international standards.

REFERENCES
[1] Noles, J., Scott, K., Weiss, H., and Zukoski, M.J., Next

Generation Space Internet, ESTC conference, August
2001, College Park, MD.

[2] Space Communications Protocol Standards - Security

Protocol, CCSDS 713.5-B-1, CCSDS, May 1999.
[3] C. Perkins, "IP Mobility Support", RFC 2002, October

1996.
[4] MobileIP Implementation: Dynamics - HUT MobileIP,

http://www.cs.hut.fi/Research/Dynamics/.
[5] Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.,

“Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification,” RFC 2205, September 1997,
Proposed Standard.

[6] Terzis, A, Krawczyk, J., Wroclawski, J., and Zhang, L.,
“RSVP Operation Over IP Tunnels,” RFC2746, January
2000.

[7] http://sites.inka.de/sites/bigred/devel/cipe.html
[8] Floyd, S., and Jacobson, V., “Link-sharing and

Resource Management Models for Packet Networks,”
IEEE/ACM Transactions on Networking, Vol. 3 No. 4,
pp. 365-386, August 1995.

[9] Kenjiro Cho, The Design and Implementation of the
ALTQ Traffic Management System, Ph.D. dissertation,
Keio University. January 2001.

[10] Hubert, Bert, Maxwell, Gregory, van Mook, Remco,
van Oosterhout, Martijn, Schroeder, Paul B., and
Spaans, Jasper, “Linux Advanced Routing & Traffic
Control HOWTO”, http://lartc.org

[11] http://www.ccsds.org

	Introduction
	NGSI System Architecture
	Security
	MobileIP Extensions
	Resource Reservation

	Standardization
	System Demonstration
	Conclusions and Future Work
	References

